round(p1 = v1)
  public
  
  
    Show source    
    
      static VALUE
flo_round(int argc, VALUE *argv, VALUE num)
{
    VALUE nd;
    double number, f;
    int ndigits = 0;
    int binexp;
    enum {float_dig = DBL_DIG+2};
    if (argc > 0 && rb_scan_args(argc, argv, "01", &nd) == 1) {
        ndigits = NUM2INT(nd);
    }
    if (ndigits < 0) {
        return int_round_0(flo_truncate(num), ndigits);
    }
    number  = RFLOAT_VALUE(num);
    if (ndigits == 0) {
        return dbl2ival(number);
    }
    frexp(number, &binexp);
/* Let `exp` be such that `number` is written as:"0.#{digits}e#{exp}",
   i.e. such that  10 ** (exp - 1) <= |number| < 10 ** exp
   Recall that up to float_dig digits can be needed to represent a double,
   so if ndigits + exp >= float_dig, the intermediate value (number * 10 ** ndigits)
   will be an integer and thus the result is the original number.
   If ndigits + exp <= 0, the result is 0 or "1e#{exp}", so
   if ndigits + exp < 0, the result is 0.
   We have:
        2 ** (binexp-1) <= |number| < 2 ** binexp
        10 ** ((binexp-1)/log_2(10)) <= |number| < 10 ** (binexp/log_2(10))
        If binexp >= 0, and since log_2(10) = 3.322259:
           10 ** (binexp/4 - 1) < |number| < 10 ** (binexp/3)
           floor(binexp/4) <= exp <= ceil(binexp/3)
        If binexp <= 0, swap the /4 and the /3
        So if ndigits + floor(binexp/(4 or 3)) >= float_dig, the result is number
        If ndigits + ceil(binexp/(3 or 4)) < 0 the result is 0
*/
    if (isinf(number) || isnan(number) ||
        (ndigits >= float_dig - (binexp > 0 ? binexp / 4 : binexp / 3 - 1))) {
        return num;
    }
    if (ndigits < - (binexp > 0 ? binexp / 3 + 1 : binexp / 4)) {
        return DBL2NUM(0);
    }
    f = pow(10, ndigits);
    return DBL2NUM(round(number * f) / f);
}