round(p1 = v1)
public
Show source
static VALUE
flo_round(int argc, VALUE *argv, VALUE num)
{
VALUE nd;
double number, f;
int ndigits = 0;
int binexp;
enum {float_dig = DBL_DIG+2};
if (argc > 0 && rb_scan_args(argc, argv, "01", &nd) == 1) {
ndigits = NUM2INT(nd);
}
if (ndigits < 0) {
return int_round_0(flo_truncate(num), ndigits);
}
number = RFLOAT_VALUE(num);
if (ndigits == 0) {
return dbl2ival(number);
}
frexp(number, &binexp);
/* Let `exp` be such that `number` is written as:"0.#{digits}e#{exp}",
i.e. such that 10 ** (exp - 1) <= |number| < 10 ** exp
Recall that up to float_dig digits can be needed to represent a double,
so if ndigits + exp >= float_dig, the intermediate value (number * 10 ** ndigits)
will be an integer and thus the result is the original number.
If ndigits + exp <= 0, the result is 0 or "1e#{exp}", so
if ndigits + exp < 0, the result is 0.
We have:
2 ** (binexp-1) <= |number| < 2 ** binexp
10 ** ((binexp-1)/log_2(10)) <= |number| < 10 ** (binexp/log_2(10))
If binexp >= 0, and since log_2(10) = 3.322259:
10 ** (binexp/4 - 1) < |number| < 10 ** (binexp/3)
floor(binexp/4) <= exp <= ceil(binexp/3)
If binexp <= 0, swap the /4 and the /3
So if ndigits + floor(binexp/(4 or 3)) >= float_dig, the result is number
If ndigits + ceil(binexp/(3 or 4)) < 0 the result is 0
*/
if (isinf(number) || isnan(number) ||
(ndigits >= float_dig - (binexp > 0 ? binexp / 4 : binexp / 3 - 1))) {
return num;
}
if (ndigits < - (binexp > 0 ? binexp / 3 + 1 : binexp / 4)) {
return DBL2NUM(0);
}
f = pow(10, ndigits);
return DBL2NUM(round(number * f) / f);
}