sort_by
sort_by()
public
Sorts enum using a set of keys generated by mapping the values in enum through the given block.
If no block is given, an enumerator is returned instead.
%w{ apple pear fig }.sort_by {|word| word.length} #=> ["fig", "pear", "apple"]
The current implementation of sort_by generates an array of tuples containing the original collection element and the mapped value. This makes sort_by fairly expensive when the keysets are simple
require 'benchmark' a = (1..100000).map {rand(100000)} Benchmark.bm(10) do |b| b.report("Sort") { a.sort } b.report("Sort by") { a.sort_by {|a| a} } end
produces:
user system total real Sort 0.180000 0.000000 0.180000 ( 0.175469) Sort by 1.980000 0.040000 2.020000 ( 2.013586)
However, consider the case where comparing the keys is a non-trivial operation. The following code sorts some files on modification time using the basic sort method.
files = Dir["*"] sorted = files.sort {|a,b| File.new(a).mtime <=> File.new(b).mtime} sorted #=> ["mon", "tues", "wed", "thurs"]
This sort is inefficient: it generates two new File objects during every comparison. A slightly better technique is to use the Kernel#test method to generate the modification times directly.
files = Dir["*"] sorted = files.sort { |a,b| test(?M, a) <=> test(?M, b) } sorted #=> ["mon", "tues", "wed", "thurs"]
This still generates many unnecessary Time objects. A more efficient technique is to cache the sort keys (modification times in this case) before the sort. Perl users often call this approach a Schwartzian Transform, after Randal Schwartz. We construct a temporary array, where each element is an array containing our sort key along with the filename. We sort this array, and then extract the filename from the result.
sorted = Dir["*"].collect { |f| [test(?M, f), f] }.sort.collect { |f| f[1] } sorted #=> ["mon", "tues", "wed", "thurs"]
This is exactly what sort_by does internally.
sorted = Dir["*"].sort_by {|f| test(?M, f)} sorted #=> ["mon", "tues", "wed", "thurs"]