method
new
v1_9_3_125 -
Show latest stable
-
0 notes -
Class: LUPDecomposition
- 1_8_6_287
- 1_8_7_72
- 1_8_7_330
- 1_9_1_378
- 1_9_2_180
- 1_9_3_125 (0)
- 1_9_3_392 (0)
- 2_1_10 (0)
- 2_2_9 (0)
- 2_4_6 (0)
- 2_5_5 (0)
- 2_6_3 (0)
- What's this?
new(a)
public
Hide source
# File lib/matrix/lup_decomposition.rb, line 153 def initialize a raise TypeError, "Expected Matrix but got #{a.class}" unless a.is_a?(Matrix) # Use a "left-looking", dot-product, Crout/Doolittle algorithm. @lu = a.to_a @row_size = a.row_size @col_size = a.column_size @pivots = Array.new(@row_size) @row_size.times do |i| @pivots[i] = i end @pivot_sign = 1 lu_col_j = Array.new(@row_size) # Outer loop. @col_size.times do |j| # Make a copy of the j-th column to localize references. @row_size.times do |i| lu_col_j[i] = @lu[i][j] end # Apply previous transformations. @row_size.times do |i| lu_row_i = @lu[i] # Most of the time is spent in the following dot product. kmax = [i, j].min s = 0 kmax.times do |k| s += lu_row_i[k]*lu_col_j[k] end lu_row_i[j] = lu_col_j[i] -= s end # Find pivot and exchange if necessary. p = j (j+1).upto(@row_size-1) do |i| if (lu_col_j[i].abs > lu_col_j[p].abs) p = i end end if (p != j) @col_size.times do |k| t = @lu[p][k]; @lu[p][k] = @lu[j][k]; @lu[j][k] = t end k = @pivots[p]; @pivots[p] = @pivots[j]; @pivots[j] = k @pivot_sign = -@pivot_sign end # Compute multipliers. if (j < @row_size && @lu[j][j] != 0) (j+1).upto(@row_size-1) do |i| @lu[i][j] = @lu[i][j].quo(@lu[j][j]) end end end end