divmod(p1) public

Returns an array containing the quotient and modulus obtained by dividing num by aNumeric. If q, r = x.divmod(y), then

    q = floor(float(x)/float(y))
    x = q*y + r

The quotient is rounded toward -infinity, as shown in the following table:

   a    |  b  |  a.divmod(b)  |   a/b   | a.modulo(b) | a.remainder(b)
  ------+-----+---------------+---------+-------------+---------------
   13   |  4  |   3,    1     |   3     |    1        |     1
  ------+-----+---------------+---------+-------------+---------------
   13   | -4  |  -4,   -3     |  -3     |   -3        |     1
  ------+-----+---------------+---------+-------------+---------------
  -13   |  4  |  -4,    3     |  -4     |    3        |    -1
  ------+-----+---------------+---------+-------------+---------------
  -13   | -4  |   3,   -1     |   3     |   -1        |    -1
  ------+-----+---------------+---------+-------------+---------------
   11.5 |  4  |   2,    3.5   |   2.875 |    3.5      |     3.5
  ------+-----+---------------+---------+-------------+---------------
   11.5 | -4  |  -3,   -0.5   |  -2.875 |   -0.5      |     3.5
  ------+-----+---------------+---------+-------------+---------------
  -11.5 |  4  |  -3,    0.5   |  -2.875 |    0.5      |    -3.5
  ------+-----+---------------+---------+-------------+---------------
  -11.5 | -4  |   2    -3.5   |   2.875 |   -3.5      |    -3.5

Examples

   11.divmod(3)         #=> [3, 2]
   11.divmod(-3)        #=> [-4, -1]
   11.divmod(3.5)       #=> [3, 0.5]
   (-11).divmod(3.5)    #=> [-4, 3.0]
   (11.5).divmod(3.5)   #=> [3, 1.0]
Show source
Register or log in to add new notes.