method
hessenberg_to_real_schur
Ruby latest stable (v2_5_5)
-
0 notes -
Class: EigenvalueDecomposition
- 1_8_6_287
- 1_8_7_72
- 1_8_7_330
- 1_9_1_378
- 1_9_2_180
- 1_9_3_125 (0)
- 1_9_3_392 (0)
- 2_1_10 (0)
- 2_2_9 (0)
- 2_4_6 (0)
- 2_5_5 (0)
- 2_6_3
- What's this?
Related methods
- Class methods (1)
- new
- Instance methods (16)
- build_eigenvectors
- cdiv
- d
- diagonalize
- eigenvalue_matrix
- eigenvalues
- eigenvector_matrix
- eigenvector_matrix_inv
- eigenvectors
- hessenberg_to_real_schur
- reduce_to_hessenberg
- to_a
- to_ary
- tridiagonalize
- v
- v_inv
= private
= protected
hessenberg_to_real_schur()
private
Nonsymmetric reduction from Hessenberg to real Schur form.
Show source
# File lib/matrix/eigenvalue_decomposition.rb, line 447 def hessenberg_to_real_schur # This is derived from the Algol procedure hqr2, # by Martin and Wilkinson, Handbook for Auto. Comp., # Vol.ii-Linear Algebra, and the corresponding # Fortran subroutine in EISPACK. # Initialize nn = @size n = nn-1 low = 0 high = nn-1 eps = Float::EPSILON exshift = 0.0 p = q = r = s = z = 0 # Store roots isolated by balanc and compute matrix norm norm = 0.0 nn.times do |i| if (i < low || i > high) @d[i] = @h[i][i] @e[i] = 0.0 end ([i-1, 0].max).upto(nn-1) do |j| norm = norm + @h[i][j].abs end end # Outer loop over eigenvalue index iter = 0 while (n >= low) do # Look for single small sub-diagonal element l = n while (l > low) do s = @h[l-1][l-1].abs + @h[l][l].abs if (s == 0.0) s = norm end if (@h[l][l-1].abs < eps * s) break end l-=1 end # Check for convergence # One root found if (l == n) @h[n][n] = @h[n][n] + exshift @d[n] = @h[n][n] @e[n] = 0.0 n-=1 iter = 0 # Two roots found elsif (l == n-1) w = @h[n][n-1] * @h[n-1][n] p = (@h[n-1][n-1] - @h[n][n]) / 2.0 q = p * p + w z = Math.sqrt(q.abs) @h[n][n] = @h[n][n] + exshift @h[n-1][n-1] = @h[n-1][n-1] + exshift x = @h[n][n] # Real pair if (q >= 0) if (p >= 0) z = p + z else z = p - z end @d[n-1] = x + z @d[n] = @d[n-1] if (z != 0.0) @d[n] = x - w / z end @e[n-1] = 0.0 @e[n] = 0.0 x = @h[n][n-1] s = x.abs + z.abs p = x / s q = z / s r = Math.sqrt(p * p+q * q) p /= r q /= r # Row modification (n-1).upto(nn-1) do |j| z = @h[n-1][j] @h[n-1][j] = q * z + p * @h[n][j] @h[n][j] = q * @h[n][j] - p * z end # Column modification 0.upto(n) do |i| z = @h[i][n-1] @h[i][n-1] = q * z + p * @h[i][n] @h[i][n] = q * @h[i][n] - p * z end # Accumulate transformations low.upto(high) do |i| z = @v[i][n-1] @v[i][n-1] = q * z + p * @v[i][n] @v[i][n] = q * @v[i][n] - p * z end # Complex pair else @d[n-1] = x + p @d[n] = x + p @e[n-1] = z @e[n] = -z end n -= 2 iter = 0 # No convergence yet else # Form shift x = @h[n][n] y = 0.0 w = 0.0 if (l < n) y = @h[n-1][n-1] w = @h[n][n-1] * @h[n-1][n] end # Wilkinson's original ad hoc shift if (iter == 10) exshift += x low.upto(n) do |i| @h[i][i] -= x end s = @h[n][n-1].abs + @h[n-1][n-2].abs x = y = 0.75 * s w = -0.4375 * s * s end # MATLAB's new ad hoc shift if (iter == 30) s = (y - x) / 2.0 s *= s + w if (s > 0) s = Math.sqrt(s) if (y < x) s = -s end s = x - w / ((y - x) / 2.0 + s) low.upto(n) do |i| @h[i][i] -= s end exshift += s x = y = w = 0.964 end end iter = iter + 1 # (Could check iteration count here.) # Look for two consecutive small sub-diagonal elements m = n-2 while (m >= l) do z = @h[m][m] r = x - z s = y - z p = (r * s - w) / @h[m+1][m] + @h[m][m+1] q = @h[m+1][m+1] - z - r - s r = @h[m+2][m+1] s = p.abs + q.abs + r.abs p /= s q /= s r /= s if (m == l) break end if (@h[m][m-1].abs * (q.abs + r.abs) < eps * (p.abs * (@h[m-1][m-1].abs + z.abs + @h[m+1][m+1].abs))) break end m-=1 end (m+2).upto(n) do |i| @h[i][i-2] = 0.0 if (i > m+2) @h[i][i-3] = 0.0 end end # Double QR step involving rows l:n and columns m:n m.upto(n-1) do |k| notlast = (k != n-1) if (k != m) p = @h[k][k-1] q = @h[k+1][k-1] r = (notlast ? @h[k+2][k-1] : 0.0) x = p.abs + q.abs + r.abs next if x == 0 p /= x q /= x r /= x end s = Math.sqrt(p * p + q * q + r * r) if (p < 0) s = -s end if (s != 0) if (k != m) @h[k][k-1] = -s * x elsif (l != m) @h[k][k-1] = -@h[k][k-1] end p += s x = p / s y = q / s z = r / s q /= p r /= p # Row modification k.upto(nn-1) do |j| p = @h[k][j] + q * @h[k+1][j] if (notlast) p += r * @h[k+2][j] @h[k+2][j] = @h[k+2][j] - p * z end @h[k][j] = @h[k][j] - p * x @h[k+1][j] = @h[k+1][j] - p * y end # Column modification 0.upto([n, k+3].min) do |i| p = x * @h[i][k] + y * @h[i][k+1] if (notlast) p += z * @h[i][k+2] @h[i][k+2] = @h[i][k+2] - p * r end @h[i][k] = @h[i][k] - p @h[i][k+1] = @h[i][k+1] - p * q end # Accumulate transformations low.upto(high) do |i| p = x * @v[i][k] + y * @v[i][k+1] if (notlast) p += z * @v[i][k+2] @v[i][k+2] = @v[i][k+2] - p * r end @v[i][k] = @v[i][k] - p @v[i][k+1] = @v[i][k+1] - p * q end end # (s != 0) end # k loop end # check convergence end # while (n >= low) # Backsubstitute to find vectors of upper triangular form if (norm == 0.0) return end (nn-1).downto(0) do |k| p = @d[k] q = @e[k] # Real vector if (q == 0) l = k @h[k][k] = 1.0 (k-1).downto(0) do |i| w = @h[i][i] - p r = 0.0 l.upto(k) do |j| r += @h[i][j] * @h[j][k] end if (@e[i] < 0.0) z = w s = r else l = i if (@e[i] == 0.0) if (w != 0.0) @h[i][k] = -r / w else @h[i][k] = -r / (eps * norm) end # Solve real equations else x = @h[i][i+1] y = @h[i+1][i] q = (@d[i] - p) * (@d[i] - p) + @e[i] * @e[i] t = (x * s - z * r) / q @h[i][k] = t if (x.abs > z.abs) @h[i+1][k] = (-r - w * t) / x else @h[i+1][k] = (-s - y * t) / z end end # Overflow control t = @h[i][k].abs if ((eps * t) * t > 1) i.upto(k) do |j| @h[j][k] = @h[j][k] / t end end end end # Complex vector elsif (q < 0) l = n-1 # Last vector component imaginary so matrix is triangular if (@h[n][n-1].abs > @h[n-1][n].abs) @h[n-1][n-1] = q / @h[n][n-1] @h[n-1][n] = -(@h[n][n] - p) / @h[n][n-1] else cdivr, cdivi = cdiv(0.0, -@h[n-1][n], @h[n-1][n-1]-p, q) @h[n-1][n-1] = cdivr @h[n-1][n] = cdivi end @h[n][n-1] = 0.0 @h[n][n] = 1.0 (n-2).downto(0) do |i| ra = 0.0 sa = 0.0 l.upto(n) do |j| ra = ra + @h[i][j] * @h[j][n-1] sa = sa + @h[i][j] * @h[j][n] end w = @h[i][i] - p if (@e[i] < 0.0) z = w r = ra s = sa else l = i if (@e[i] == 0) cdivr, cdivi = cdiv(-ra, -sa, w, q) @h[i][n-1] = cdivr @h[i][n] = cdivi else # Solve complex equations x = @h[i][i+1] y = @h[i+1][i] vr = (@d[i] - p) * (@d[i] - p) + @e[i] * @e[i] - q * q vi = (@d[i] - p) * 2.0 * q if (vr == 0.0 && vi == 0.0) vr = eps * norm * (w.abs + q.abs + x.abs + y.abs + z.abs) end cdivr, cdivi = cdiv(x*r-z*ra+q*sa, x*s-z*sa-q*ra, vr, vi) @h[i][n-1] = cdivr @h[i][n] = cdivi if (x.abs > (z.abs + q.abs)) @h[i+1][n-1] = (-ra - w * @h[i][n-1] + q * @h[i][n]) / x @h[i+1][n] = (-sa - w * @h[i][n] - q * @h[i][n-1]) / x else cdivr, cdivi = cdiv(-r-y*@h[i][n-1], -s-y*@h[i][n], z, q) @h[i+1][n-1] = cdivr @h[i+1][n] = cdivi end end # Overflow control t = [@h[i][n-1].abs, @h[i][n].abs].max if ((eps * t) * t > 1) i.upto(n) do |j| @h[j][n-1] = @h[j][n-1] / t @h[j][n] = @h[j][n] / t end end end end end end # Vectors of isolated roots nn.times do |i| if (i < low || i > high) i.upto(nn-1) do |j| @v[i][j] = @h[i][j] end end end # Back transformation to get eigenvectors of original matrix (nn-1).downto(low) do |j| low.upto(high) do |i| z = 0.0 low.upto([j, high].min) do |k| z += @v[i][k] * @h[k][j] end @v[i][j] = z end end end